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Abstract 

Wind and wave usually coexist in the real sea. Wind can 
greatly influence its kinematic and dynamic traits while the 
extreme wave occurs. In this study, a numerical model was 
developed to study the wind and extreme wave interaction based 
on potential flow theory. In the numerical model, the fully 
nonlinear kinematic and dynamic boundary conditions are 
satisfied on the instantaneous free surface. The extreme wave is 
generated at the certain spatial and temporal points using the 
wave focusing technique. Wind speed was introduced into the 
dynamic free surface boundary condition by making use of 
Jeffrey’s sheltering mechanism. Besides, the mixed Eularian-
Lagrangian technique was used to trace the transient free surface 
in the time-domain simulation. The boundary integral equation 
was founded based on the Second Green’s Identity and resolved 
with the higher-order boundary element method. The numerical 
model was validated in comparison with the published 
experimental data. Then numerical tests were performed to study 
the wind influence on the characteristics of the focused wave 
group including derivations of focal time and position, focused 
wave height, the evolution process of wave focusing and 
defocusing, etc. 
 

Introduction  

With the further development in the offshore industry, the 
exploitation of offshore oil and gas resources moves to the deep 
water. In the real sea, strong nonlinear wave conditions may 
result in great harm to marine engineering structure. Extreme 
wave, which were known due to their exceptionally large height, 
steep shape, asymmetric wave form and unpredictability, can 
pose a serious threat to ships and offshore structures. Extreme 
waves generally are grouped, which are observed to be generated 
by accompanied with wind [6]. In the process of wave 
propagation, the wind energy is transferred to the wave group, 
which has a great influence on the wave evolution and its 
nonlinear characteristics. So it is very necessary to study the 
influence of wind on the evolution of extreme waves and its 
nonlinear characteristics. Liu et al. [4] presented an exploratory 
observational study of rogue waves based on wave measurement 
made in South Indian Ocean, and the effects of wind on the 
generation and propagation of extreme waves were studied. 
Touboul [14] numerically simulated the evolution of the extreme 
wave in the wind by the higher-order spectral method based on 
Jeffreys' sheltering mechanism and modulation instability. In 
addition, some numerical simulation methods have been 
established. De Angelis[1], Sullivan[9,10,11] and Nakayama[7] 
used the Navier-Stokes model to simulate the water flow on the 
surface. Kharif et al.[3] and Touboul et al. [12] introduced an 
additional air pressure on the free surface boundary conditions by 
considering Jeffreys' sheltering mechanism. Fulgosi et al. [2] 
established a Navier-Stokes equation based on the two-phase 
flow method, in which the interaction between wind and waves 

was fully considered. Yan and Ma [15] presented an improved 
model for evaluating air pressure acting on 2D extreme waves by 
analysing the pressure distribution over extreme waves using the 
QALE-FEM and StarCD approach.  

As an extension of the previous studies, further investigations 
about the wind effect on the nonlinear characteristics of focused 
wave group were performed. A fully nonlinear time-domain 
higher-order boundary element method was developed to study 
the interaction of uniform wind and focused wave group. Then 
the influences of wind speed, wave spectrum and incident wave 
amplitude on the extreme wave properties under the action of 
wind is considered. 

Numerical Model 

 
Figure.1. Definition sketch of the numerical flume 

The interaction between extreme waves and wind in a 2D fluid 
domain is considered as shown in Figure.1. A Cartesian 
coordinate system Oxz is employed such that its origin locates on 
the still water level at the left end of the domain, and the z-axis is 
positive upward. It is assumed that the fluid is incompressible, 
inviscid and the flow motion irrotational so that a velocity 
potential exists in the fluid domain and velocity can be expressed 
as the following 
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The governing equation satisfies Laplace equation 
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The nonlinear kinematic and dynamic free surface boundary 
conditions is given as the following forms on the transient free 
surface 
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In order to consider the wind influence, the pressure on the free 
surface in Eq.(4) is related to the local wave slope according to 
the following equation expressed by Kharif et al.[3] and Touboul 
et al.[12] 
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where the constant s is the sheltering coefficient; U the uniform 
wind speed; c the local wave phase velocity and a is 
atmospheric density. s=0.5 was determined from the previous 
researches [3, 12]. Here, a critical value of the local slope 

cx is 
introduced, above which an energy transfer from the wind to the 
waves occurs. The critical value of the slope is chosen as 0.35 [3]. 
Then the pressure condition can be rewritten as follows: 
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The mixed Euler-Lagrangian scheme is used for tracing the fluid 
particle on the transient free surface in the present study. Thus, 
the material derivative is introduced and the kinematic free 
surface boundary condition is expressed as follows 
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On the flume bottom d, the rigid and impermeable boundary 
condition is satisfied as the following 
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Towards the end of the computational domain, an artificial 
damping beach is applied on the free surface so that the wave 
energy is gradually dissipated in the direction of the wave 
propagation. The profile and magnitude of the artificial damping 
have to be designed to minimize the possible wave reflection at 
the entrance of the damping zone. Then the free surface boundary 
conditions can be written as follows 
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where X0 is the starting position of the damping layer. The 
damping function ( )x is adopted as: 
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where min  denotes the minimum angular frequency of the 
wave components and Lb is the length of the damping layer, and 
defined as max1.5 in the present study.  

By applying Green’s second identity to the above boundary 
value problem in the previous part, the boundary integral 
equation can be converted in the usual manner into the following 
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where p=(x0, z0) and q=(x, z) are source and field points, 
respectively.  denotes the boundary of the whole computational 
domain, and ( )p  is the solid angle coefficient. 

The boundary surface is discretized by the three-node line 
elements based on the quadratic shape functions. Within the 
boundary elements, physical variables are also interpolated by the 

same shape functions, i.e., the elements are isoparametric. 
Numerical integration over each boundary element is performed 
by using Gauss-Legendre quadrature with four integration points. 
Then the discretized integral equation is transformed into a 
system of linear algebraic equations. Since the discretized 
integral equation is always variant in time, all the boundary 
surface grids are updated at each time step using 4th-order 
Runga-Kutta approach. Once the Eq. (11) is solved, we can 
obtain the time series of surface elevation at any position [8]. 

Comparison with the Experiment 

As a validation of the present model, numerical results are 
compared with the experiment performed by Kharif et al. [3]. The 
case considered here is about a 2D extreme wave under the action 
of wind. The length and depth of the flume are 40m and 1m, 
respectively. The extreme wave is generated by a wavemaker 
undergoing a sine motion based on the focused wave theory. The 
wave frequency varies linearly from the maximum frequency 
( max 1.85f Hz ) to the minimum one ( min 0.8f Hz ) in a 
duration of T0=23.5s. The piston-type wavemaker is used in the 
numerical simulation. The motion of the wavemaker is governed 
by the following equation 
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where a is the expected wave amplitude and given as 0.007, and 
F is transfer function of the wavemaker [5] which is given as 
follows  
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where h is the static water depth. Wave number k and angular 
frequency ω satisfy the linear dispersion relation. 

Figure 2 displays the time series of the experimental and 
numerical surface elevations at fetch x=1m, in which the 
numerical spatial and temporal steps are defined as x=λmin/20 
and t=T/50, respectively. The data at fetch x=1m are in excellent 
agreement between two results while the discrepancies are 
observed at the starting position due to the difference of ramping 
functions.  

 
Figure 2. Time series of surface elevation at fetch x=1m (experimental 

data - solid line and numerical results - dashed line 

 

Figure 3 shows the time series of the surface elevations at three 
fetches (i.e., x=11m, 18m and 21m), measured experimentally 
and computed numerically. The equilibrium positions of the 
surface elevation corresponding to fetches x=18m and x=21m are 
located at 0.05 and 0.1 respectively. From the figure, it can be 
seen that both the amplitudes and phases of the numerical and 



experimental wave trains are quite similar, demonstrating the 
accuracy and efficiency of the proposed numerical model to 
reproduce correctly the nonlinear evolution of wave groups 
during the focusing-defocusing cycle. 

 
Figure 3.Time series of surface elevations at three fetches x=21m, x=18m, 

x=11m (experiments -solid line and numerical simulation-dashed line) 

Numerical Results and Discussions  

The nonlinear interaction between winds and 2D focused wave 
group is further studied in this section. In the numerical 
simulation, the focused wave group is generated using a sum of a 
number of sine wave components. The displacement of the 
wavemaker is given by 
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where rT is the transfer function, which is determined as follows 
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where N=29 is the total number of components and ik , i  are 
the wave number and frequency of the i-th component, 
respectively, which are related to each other 
by  2 tanhi i igk k h  . ai is the amplitude of i-th wave component, 
which is taken as the same for all components. The simple 
relationship between target amplitude (Ai) and the amplitudes of 
the components is ai=Ai/N. Wave components are equally spaced 
within the appropriate wave period range. In the numerical 
simulation, two cases, i.e. 0.6s≤T≤1.4s and 0.8s≤T≤1.2s, are 
considered. The former case represents a wide spectrum 
bandwidth and the latter case represents a narrow spectrum 
bandwidth. The linear focal position and focal time are defined as 
xp=6.5λmin and tp=16.5Tmin respectively (λmin and Tmin denote the 
shortest wavelength and smallest wave period of wave 
components, respectively). The input wave target amplitudes 
Ai=0.05m and 0.06m are used here. 

Figure 4 shows the distribution of focused wave amplitude 
under the action of different wind speeds with narrow and wide 
spectrum bandwidth, respectively. For the convenient 
comparison, the focused wave amplitude is nondimensionalized 
by Ai. It is observed that dimensionless extreme wave amplitude 
has a significant increase as the wind speed increases. This is due 
to more energy transferred from wind into the waves group that 
leads to the increase of the peak value. In addition, the value A/Ai 
increases faster for the larger wave amplitude. Compared with 
Ai=0.05m, the dimensionless maximum amplitude has a more 
significant increase due to higher and steeper wave crest in the 
case of Ai=0.06m. Frequency bandwidth is also one of the 
important factors influencing the characteristic of the extreme 
wave. The dimensionless focused wave amplitude is larger with 

the same wind speed in the case of narrow spectrum bandwidth, 
which shows stronger nonlinearity. 

 
(a) 0.6s≤T≤1.4s  

 

(b) 0.8s≤T≤1.2s  

Figure 4. The dimensionless focusing wave amplitude as a function of 
wind speed 

 
(a) 0.6s≤T≤1.4s, Ai=0.06m  

 
(b) 0.8s≤T≤1.2s, Ai=0.06m 

Figure 5. Time series of surface elevations at the focal time with 
different wind speeds of 0, 4 and 8m/s 



By taking Ai=0.06m as an example, Figure 5 shows the surface 
elevation at the focusing time on wind speeds of 0, 4 and 8m/s, 
respectively. For the convenience, a simple shift of the horizontal 
coordinate is carried out by subtracting the linear focal position 
xp. It is obviously observed that the focused wave amplitude 
increases with the increase of wind speed. This figure also shows 
the the wind can further increase the shifts of focal position 
downstream the flume. 

Figure 6 gives the deviation of the real focal position from the 
linear one as a function of the wind velocity. For the case of 
small amplitude Ai=0.05m, the focal position basically has no 
changes for different wind speed. However, for the case of large 
amplidtude Ai=0.06m, the wind weakly shifts the focusing point 
downstream, which can be also observed in figure 5. The same 
phenomenon was also found in the experiments of Kharif [3] and 
Touboul et al. [12], which is due to the action of the current 
induced by the wind. The input target wave amplitude plays an 
important role in the results. The Jeffreys’ sheltering mechanism 
describes air flow separation over waves. This mechanism is not 
applicable for the gentle waves. However, for the steep wave, it is 
well known that air flow separation occurs, resulting in a 
significant increase of wind to wave energy [13]. 

 
 

(a) 0.6s≤T≤1.4s 

 
(b) 0.8s≤T≤1.2s  

Figure 6. Distribution of the real focal position deviation from the input 
ones with wind velocity 

Conclusions 

In this paper, the influence of wind on the characteristics of a 
2D dispersive focused wave group is investigated using a fully 
nonlinear numerical flume model, in which the modified 
Jeffreys’ sheltering mechanism model is used to take into account 
of the wind pressure effect. Good agreements of the predicted 
results with the other published data are given to validate the 
proposed numerical model. Numerical investigations demonstrate 
that the action of wind can increase the extreme wave amplitude 

of focused wave group. The wind weakly shifts the focusing 
position downstream, which is due to the action of the current 
induced by the wind. Both narrow spectrum and larger input 
target amplitude have more significant influences on the extreme 
wave under the condition of wind. 

Acknowledgements 

The authors would like to gratefully acknowledge the financial 
support from the National Science Foundation of China (Grant 
Nos. 51679036, 51490672) and the Program for New Century 
Excellent Talents in University (Grant No.NCET-13-0076). 

 

References 

[1]. Angelis, V. D., Lombardi, P., & Banerjee, S. (1997). Direct 
numerical simulation of turbulent flow over a wavy wall. 
Physics of Fluids, 9(9), 2429-2442. 

[2]. Fulgosi, M., Lakehal, D., Banerjee, S., & De Angelis, V. 
(2003). Direct numerical simulation of turbulence in a 
sheared airwater flow with a deformable interface. Journal 
of Fluid Mechanics, 482(1), 319-345. 

[3]. Kharif, C., Giovanangeli, J. P., Touboul, J., Grare, L., & 
Pelinovsky, E. (2008). Influence of wind on extreme wave 
events: experimental and numerical approaches. Journal of 
Fluid Mechanics, 594(1), 209-247. 

[4]. Liu, P. C., Machuchon, K. R., & Wu, C. H. (2004). 
Exploring rogue waves from observations in south indian 
ocean. Actes de colloques - IFREMER, 39. 

[5]. Ma, Q. W. (2007). Numerical generation of freak waves 
using mlpg_r and qale-fem methods. Computer Modeling 
in Engineering & Sciences,18(3), 223-234. 

[6]. Mori, N., Liu, P. C., & Yasuda, T. (2002). Analysis of freak 
wave measurements in the sea of japan. Ocean Engineering, 
29(11), 1399-1414. 

[7]. Nakayama, A., Sakio, D. K., Nakayama, A., & Sakio, D. K. 
(2002). Simulation of flows over wavy rough boundaries. 
Center for Turbulent Research, 313. 

[8]. Ning, D. Z., & Teng, B. (2007). Numerical simulation of 
fully nonlinear irregular wave tank in three dimension. 
International Journal for Numerical Methods in 
Fluids,53(12), 1847-1862. 

[9]. Sullivan P P, Edson J B,Mcwilliams J C,et al. Large-eddy 
simulations and observations of wave-driven boundary 
layers[C].In Proc. 16th Symp. on Boundary Layers and 
Turbulence,Portland, 2004. 

[10]. Sullivan, P. P., McWilliams, J. C., & Moeng, C. H. (2000). 
Simulation of turbulent flow over idealized water waves. 
Journal of Fluid Mechanics, 404, 47-85. 

[11]. Sullivan, P. P., & Mcwilliams, J. C. (2002). Turbulent flow 
over water waves in the presence of stratification. Physics 
of Fluids,14(3), 1182-1195. 

[12]. Touboul, J., & Giovanangeli, J. P. (2006). Freak waves 
under the action of wind: experiments and simulations. 
European Journal of Mechanics B Fluids,25(5), 662–676. 

[13]. Touboul, J., Kharif, C., Pelinovsky, E., & Giovanangeli, J. P. 
(2008). On the interaction of wind and steep gravity wave 
groups using miles' and Jeffreys' mechanisms. Nonlinear 
Processes in Geophysics,15(6), 1023-1031. 

[14]. Touboul, J. (2007). On the influence of wind on extreme 
wave events. Natural Hazards & Earth System 
Sciences,7(1), 123-128. 

[15]. Yan, S., & Ma, Q. W. (2010). Numerical simulation of 
interaction between wind and 2d freak waves. European 
Journal of Mechanics - B/Fluids,29(1), 18–31. 

 


